Private Van Service Sandton

For safety and for environmental considerations Private Van Service in Sandton, most airports are built far away from cities and other residential areas. This poses an issue of traveling to and from the airport. People need transportation to the airfield when they are flying out and need to reach the airfield in time to catch their flight. Likewise, Taxi In Airport after landing at the airfield from a flight, transport from the airfield to the city is required. Both the issues are solved with private operators operating lax airfield car services.Transportation utilities provide luxury car services to and from the airport.

Airport Taxi Service Costs

These are mainly chauffeur driven cars, for which travelers may book reservations online. This facility comes as a great advantage to the commuter. With an online reservation system, the traveler is confident that he will be picked up from his hotel, office or home by a cab and taken to the airport right on-time to catch his flight, the service being guaranteed.Most transportation utilities track national and international flights. Therefore, the commuter may rest assured that the transportation from the aerodrome will be available and waiting for him, even if the flight arrives late into the night.

Taxi Service To Airport Cost

The traveler no longer has to depend on rented cars and driving them through rush-hour traffic. After the long journey by flight, Airport Taxi Airport he could take the luxurious, relaxing ride to his hotel, home or office.They have professional chauffeurs who have been trained to accommodate customer needs. They possess the required expertise and knowledge to conduct the traveler to and from the destination. They know the city roads like the back of their hands and can help the traveler reach his destination on time, even if the normal city roads are choked with traffic.

ComfortDelGro Australia

Best Airport Taxi Service

Airport car service providers value the relationship with their customers and strive to maintain the required professionalism that is expected from such executive luxury service. These smart luxury car services are hard to forget once their utility has been realized.

Private Van Service in Sandton ?

Airport Transfer Service Cost   (Redirected from Shuttle bus service) A transit bus operating in Campinas, Brazil

Public transport bus services are generally based on regular operation of transit buses along a route calling at agreed bus stops according to a published public transport timetable.

Parisian Omnibus, late nineteenth century A public transport timetable for bus services in England in the 1940s and 1950s

While there are indications of experiments with public transport in Paris as early as 1662,[1][2][3] there is evidence of a scheduled "bus route" from Market Street in Manchester to Pendleton in Salford UK, started by John Greenwood in 1824.[4]

Another claim for the first public transport system for general use originated in Nantes, France, in 1826. Stanislas Baudry, a retired army officer who had built public baths using the surplus heat from his flour mill on the city's edge, set up a short route between the center of town and his baths. The service started on the Place du Commerce, outside the hat shop of a M. Omnès, who displayed the motto Omnès Omnibus (Latin for "everything for everybody" or "all for all") on his shopfront. When Baudry discovered that passengers were just as interested in getting off at intermediate points as in patronizing his baths, he changed the route's focus. His new voiture omnibus ("carriage for all") combined the functions of the hired hackney carriage with a stagecoach that travelled a predetermined route from inn to inn, carrying passengers and mail. His omnibus had wooden benches that ran down the sides of the vehicle; passengers entered from the rear.

In 1828, Baudry went to Paris where he founded a company under the name Entreprise générale des omnibus de Paris, while his son Edmond Baudry founded two similar companies in Bordeaux and in Lyon.[5]

A London newspaper reported on July 4, 1829 that "the new vehicle, called the omnibus, commenced running this morning from Paddington to the City", operated by George Shillibeer.

The first omnibus service in New York began in 1829, when Abraham Brower, an entrepreneur who had organized volunteer fire companies, established a route along Broadway starting at Bowling Green. Other American cities soon followed suit: Philadelphia in 1831, Boston in 1835 and Baltimore in 1844. In most cases, the city governments granted a private company—generally a small stableman already in the livery or freight-hauling business—an exclusive franchise to operate public coaches along a specified route. In return, the company agreed to maintain certain minimum levels of service.

In 1832 the New York omnibus had a rival when the first trams, or streecars started operation along Bowery,[6] which offered the excellent improvement in amenity of riding on smooth iron rails rather than clattering over granite setts, called "Belgian blocks". The streetcars were financed by John Mason, a wealthy banker, and built by an Irish-American contractor, John Stephenson. The Fifth Avenue Coach Company introduced electric buses to Fifth Avenue in New York in 1898.

In 1831, New Yorker Washington Irving remarked of Britain's Reform Act (finally passed in 1832): "The great reform omnibus moves but slowly." Steam buses emerged in the 1830s as competition to the horse-drawn buses.

The omnibus extended the reach of the emerging cities. The walk from the former village of Paddington to the business heart of London in the City was a long one, even for a young man in good condition. The omnibus thus offered the suburbs more access to the inner city. The omnibus encouraged urbanization. Socially, the omnibus put city-dwellers, even if for only half an hour, into previously-unheard-of physical intimacy with strangers, squeezing them together knee-to-knee. Only the very poor remained excluded. A new division in urban society now came to the fore, dividing those who kept carriages from those who did not. The idea of the "carriage trade", the folk who never set foot in the streets, who had goods brought out from the shops for their appraisal, has its origins in the omnibus crush.

John D. Hertz founded the Yellow Coach Manufacturing Company in 1923 and then sold a majority of shares to General Motors in 1925.

From the 1920s General Motors and others started buying up streetcar systems across the United States with a view to replacing them with buses in what became known as the Great American Streetcar Scandal.[7] This was accompanied by a continuing series of technical improvements: pneumatic "balloon" tires during the early 1920s, monocoque body construction in 1931, automatic transmission in 1936, diesel engines in 1936, 50+ passengers in 1948, and air suspension in 1953.[8]

The arrest of Rosa Parks in 1955 for not giving up her seat to a white man on a public bus is considered one of the catalyst of the Civil Rights Movement within the United States.

A bi-articulated bus on the RIT bus rapid transit system in Curitiba, Brazil An urban bus in Gómez Palacio, Durango, Mexico.

The names of different types of bus services vary according to local tradition or marketing, although services can be classified into basic types based on route length, frequency, purpose of use and type of bus used.

Long-distance coach services (US: Intercity bus line) are bus services operated over long distances between cities. These services can form the mainstay of the travel network in countries with poor railway infrastructure. Different coach operators may band together on a franchise or connecting basis to offer a branded network that covers large distances, such as Trailways and National Express. These networks can even operate internationally, such as Eurolines of Europe. Interurban bus services are primarily aimed at linking together one or more urban centres, and as such are often run as express services while travelling in the intermediate rural areas, or even only call at two terminal points as a long distance shuttle service. Some interurban services may be operated as high specification luxury services, using coaches, in order to compete with railways, or link areas not rail connected. Interurban services may often terminate in central bus stations rather than on street stops. Other interurban services may specifically call at intermediate villages and may use slower transit buses or dual purpose buses.


A shuttle bus service in Sydney. School Bus See also: Public transport timetable

Many public bus services are run to a specific timetable giving specific times of departure and arrival at waypoints along the route. These are often difficult to maintain in the event of traffic congestion, breakdowns, on/off bus incidents, road blockages or bad weather. Predictable effects such as morning and evening rush hour traffic are often accounted for in timetables using past experience of the effects, although this then prevents the opportunity for drafting a ‘clock face’ timetable where the time of a bus is predictable at any time through the day. Predictable short term increases in passenger numbers may be dealt with by providing “duplicate” buses, where two or more buses operate the same slot in the timetable. Unpredictable problems resulting in delays and gaps in the timetabled service may be dealt with by ‘turning’ a bus early before it reaches it terminus, so that it can fill a gap in the opposite direction, meaning any passengers on the turned bus need to disembark and continue on a following bus. Also, depending on the location of the bus depot, replacement buses may be dispatched from the depot to fill in other gaps, starting the timetable part way along the route.

There is a common cliché that people “wait all day, and then three come along at once”, in relation to a phenomenon where evenly timetabled bus services can develop a gap in service followed by buses turning up almost simultaneously. This occurs when the rush hour begins and numbers of passengers at a stop increases, increasing the loading time, and thus delay scheduled service. The following bus then catches up because it begins to be delayed less at stops due to fewer passengers waiting. This is called bus bunching. This is prevented in some cities such as Berlin by assigning every stop arrival times where scheduled buses should arrive no earlier than specified.

Some services may have no specific departure times, the timetable giving the frequency of service on a route at particular phases of the day. This may be specified with departure times, but the over-riding factor is ensuring the regularity of buses arriving at stops. These are often the more frequent services, up to the busiest bus rapid transit schemes. For headway-based schemes, problems can be managed by changing speed, delaying at stops and leap-frogging a bus boarding at a stop.

Services may be strictly regulated in terms of level of adherence to timetables, and how often timetables may be changed. Operators and authorities may employ on street bus inspectors to monitor adherence in real time. Service operators often have a control room, or in the case of large operations, route controllers, who can monitor the level of service on routes and can take remedial action if problems occur. This was made easier with the technological advances of two way radio contact with drivers, and vehicle tracking systems.

Bus services have led to the implementation of various types of infrastructure now common in many urban and suburban settings. The most prevalent example is the ubiquitous bus stop. Large interchanges have required the building of bus stations. In roads and streets, infrastructure for buses has resulted in modifications to the kerb line such as protrusions and indentations, and even special kerb stones. Entire lanes or roads have been reserved for buses in bus lanes or busways. Bus fleets require large storage premises often located in urban areas, and may also make use of central works facilities.

Bus station in rural Russia See also: On-time performance

The level and reliability of bus services is often dependent on the quality of the local road network and levels of traffic congestion, and the population density. Services may be organised on tightly regulated networks with restrictions on when and where services operate, while other services are operated on an ad hoc basis in the model of share taxis.

Increasingly, technology is being used to improve the information provided to bus users, with vehicle tracking technologies to assist with scheduling, and to achieve real time integration with passenger information systems that display service information at stops, inside buses, and to waiting passengers through personal mobile devices or text messaging.

Bus drivers may be required to conduct fare collection, inspect a travel pass or free travel pass, or oversee stored-value card debiting. This may require the fitting of equipment to the bus. Alternatively, this duty and equipment may be delegated to a conductor who rides on the bus. In other areas, public transport buses may operate on a zero-fare basis, or ticket validation may be through use of on-board/off-board proof-of-payment systems, checked by roving ticket controllers who board and alight buses at random.

In some competitive systems, an incumbent operator may introduce a “low cost unit” paying lower wages, in order to be able to offer lower fares, using older buses cascaded from a main fleet to also reduce costs. In some sectors, operators such as Megabus (both in the UK and in North America) have attempted to emulate the low cost airlines model in order to attract passengers through low fares, by offering no frills bus services.

See also: List of bus operating companies

Public transport bus operation is differentiated from other bus operation by the fact the owner or driver of a bus is employed by or contracted to an organisation whose main public duty or commercial interest is to provide a public transport service for passengers to turn up and use, rather than fulfilling private contracts between the bus operator and user. Public transport buses are operated as a common carrier under a contract of carriage between the passenger and the operator.

The owners of public transport buses may be the municipal authority or transit authority that operates them, or they may be owned by individuals or private companies who operate them on behalf of the authorities on a franchise or contract basis. Other buses may be run entirely as private concerns, either on an owner-driver basis, or as multi-national transport groups. Some countries have specifically deregulated their bus services, allowing private operators to provide public bus services. In this case, an authority may make up the shortfall in levels of private service provision by funding or operating ‘socially necessary’ services, such as early or late services, on the weekends, or less busy routes. Ownership/operation of public transport buses can also take the form of a charitable operation or not for profit social enterprises.

Larger operations may have fleets of thousands of vehicles. At its peak in the 1950s, the London Transport Executive owned a bus fleet of 8,000 buses, the largest in the world. Many small operators have only a few vehicles or a single bus owned by an owner driver. Andhra Pradesh State Road Transport Corporation holds the Guinness world record of having largest fleet of buses with 22,555 buses.[9]

In all cases in the developed world, public transport bus services are usually subject to some form of legal control in terms of vehicle safety standards and method of operation, and possibly the level of fares charged and routes operated.

Increasingly bus services are being made accessible, often in response to regulations and recommendations laid out in disability discrimination laws. This has resulted in the introduction of flexible bus services, and the introduction of Low-floor buses with features aimed at helping elderly, disabled or impaired passengers.

Wiki Wiki Shuttle

Best Transportation To Airport

The Space Shuttle was a partially reusable low Earth orbital spacecraft system operated by the U.S. National Aeronautics and Space Administration (NASA), as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft of which it was the only item funded for development.[10] The first of four orbital test flights occurred in 1981, leading to operational flights beginning in 1982. In addition to the prototype whose completion was cancelled, five complete Shuttle systems were built and used on a total of 135 missions from 1981 to 2011, launched from the Kennedy Space Center (KSC) in Florida. Operational missions launched numerous satellites, interplanetary probes, and the Hubble Space Telescope (HST); conducted science experiments in orbit; and participated in construction and servicing of the International Space Station. The Shuttle fleet's total mission time was 1322 days, 19 hours, 21 minutes and 23 seconds.[11]

Shuttle components included the Orbiter Vehicle (OV) with three clustered Rocketdyne RS-25 main engines, a pair of recoverable solid rocket boosters (SRBs), and the expendable external tank (ET) containing liquid hydrogen and liquid oxygen. The Space Shuttle was launched vertically, like a conventional rocket, with the two SRBs operating in parallel with the OV's three main engines, which were fueled from the ET. The SRBs were jettisoned before the vehicle reached orbit, and the ET was jettisoned just before orbit insertion, which used the orbiter's two Orbital Maneuvering System (OMS) engines. At the conclusion of the mission, the orbiter fired its OMS to de-orbit and re-enter the atmosphere. The orbiter then glided as a spaceplane to a runway landing, usually to the Shuttle Landing Facility at Kennedy Space Center, Florida or Rogers Dry Lake in Edwards Air Force Base, California. After landing at Edwards, the orbiter was flown back to the KSC on the Shuttle Carrier Aircraft, a specially modified version of the Boeing 747.

The first orbiter, Enterprise, was built in 1976, used in Approach and Landing Tests and had no orbital capability. Four fully operational orbiters were initially built: Columbia, Challenger, Discovery, and Atlantis. Of these, two were lost in mission accidents: Challenger in 1986 and Columbia in 2003, with a total of fourteen astronauts killed. A fifth operational (and sixth in total) orbiter, Endeavour, was built in 1991 to replace Challenger. The Space Shuttle was retired from service upon the conclusion of Atlantis's final flight on July 21, 2011. The U.S. has since relied primarily on the Russian Soyuz spacecraft to transport supplies and astronauts to the International Space Station.

The Space Shuttle was a partially reusable[12] human spaceflight vehicle capable of reaching low Earth orbit, commissioned and operated by the US National Aeronautics and Space Administration (NASA) from 1981 to 2011. It resulted from shuttle design studies conducted by NASA and the US Air Force in the 1960s and was first proposed for development as part of an ambitious second-generation Space Transportation System (STS) of space vehicles to follow the Apollo program in a September 1969 report of a Space Task Group headed by Vice President Spiro Agnew to President Richard Nixon. Nixon's post-Apollo NASA budgeting withdrew support of all system components except the Shuttle, to which NASA applied the STS name.[10]

The vehicle consisted of a spaceplane for orbit and re-entry, fueled from expendable liquid hydrogen and liquid oxygen tanks, with reusable strap-on solid booster rockets. The first of four orbital test flights occurred in 1981, leading to operational flights beginning in 1982, all launched from the Kennedy Space Center, Florida. The system was retired from service in 2011 after 135 missions,[13] with Atlantis making the final launch of the three-decade Shuttle program on July 8, 2011.[14] The program ended after Atlantis landed at the Kennedy Space Center on July 21, 2011. Major missions included launching numerous satellites and interplanetary probes,[15] conducting space science experiments, and servicing and construction of space stations. The first orbiter vehicle, named Enterprise, was used in the initial Approach and Landing Tests phase but installation of engines, heat shielding, and other equipment necessary for orbital flight was cancelled.[16] A total of five operational orbiters were built, and of these, two were destroyed in accidents.

It was used for orbital space missions by NASA, the US Department of Defense, the European Space Agency, Japan, and Germany.[17][18] The United States funded Shuttle development and operations except for the Spacelab modules used on D1 and D2—sponsored by Germany.[17][19][20][21][22] SL-J was partially funded by Japan.[18]

STS-129 ready for launch Shuttle approach and landing test crews, 1976 Early concept for a space shuttle refueling a space tug, 1970

At launch, it consisted of the "stack", including the dark orange external tank (ET) (for the first two launches the tank was painted white);[23][24] two white, slender solid rocket boosters (SRBs); and the Orbiter Vehicle, which contained the crew and payload. Some payloads were launched into higher orbits with either of two different upper stages developed for the STS (single-stage Payload Assist Module or two-stage Inertial Upper Stage). The Space Shuttle was stacked in the Vehicle Assembly Building, and the stack mounted on a mobile launch platform held down by four frangible nuts[25] on each SRB, which were detonated at launch.[26]

The Shuttle stack launched vertically like a conventional rocket. It lifted off under the power of its two SRBs and three main engines, which were fueled by liquid hydrogen and liquid oxygen from the ET. The Space Shuttle had a two-stage ascent. The SRBs provided additional thrust during liftoff and first-stage flight. About two minutes after liftoff, frangible nuts were fired, releasing the SRBs, which then parachuted into the ocean, to be retrieved by NASA recovery ships for refurbishment and reuse. The orbiter and ET continued to ascend on an increasingly horizontal flight path under power from its main engines. Upon reaching 17,500 mph (7.8 km/s), necessary for low Earth orbit, the main engines were shut down. The ET, attached by two frangible nuts[27] was then jettisoned to burn up in the atmosphere.[28] After jettisoning the external tank, the orbital maneuvering system (OMS) engines were used to adjust the orbit. The orbiter carried astronauts and payloads such as satellites or space station parts into low Earth orbit, the Earth's upper atmosphere or thermosphere.[29] Usually, five to seven crew members rode in the orbiter. Two crew members, the commander and pilot, were sufficient for a minimal flight, as in the first four "test" flights, STS-1 through STS-4. The typical payload capacity was about 50,045 pounds (22,700 kg) but could be increased depending on the choice of launch configuration. The orbiter carried its payload in a large cargo bay with doors that opened along the length of its top, a feature which made the Space Shuttle unique among spacecraft. This feature made possible the deployment of large satellites such as the Hubble Space Telescope and also the capture and return of large payloads back to Earth.

When the orbiter's space mission was complete, it fired its OMS thrusters to drop out of orbit and re-enter the lower atmosphere.[29] During descent, the orbiter passed through different layers of the atmosphere and decelerated from hypersonic speed primarily by aerobraking. In the lower atmosphere and landing phase, it was more like a glider but with reaction control system (RCS) thrusters and fly-by-wire-controlled hydraulically actuated flight surfaces controlling its descent. It landed on a long runway as a conventional aircraft. The aerodynamic shape was a compromise between the demands of radically different speeds and air pressures during re-entry, hypersonic flight, and subsonic atmospheric flight. As a result, the orbiter had a relatively high sink rate at low altitudes, and it transitioned during re-entry from using RCS thrusters at very high altitudes to flight surfaces in the lower atmosphere.

President Nixon (right) with NASA Administrator Fletcher in January 1972, three months before Congress approved funding for the Shuttle program Vision for a Spacelab mission with various equipment in the Shuttle bay Vision for Space Station Freedom, with an STS orbiter docked

The formal design of what became the Space Shuttle began with the "Phase A" contract design studies issued in the late 1960s. Conceptualization had begun two decades earlier, before the Apollo program of the 1960s. One of the places the concept of a spacecraft returning from space to a horizontal landing originated was within NACA, in 1954, in the form of an aeronautics research experiment later named the X-15. The NACA proposal was submitted by Walter Dornberger.

In 1958, the X-15 concept further developed into a proposal to launch an X-15 into space, and another X-series spaceplane proposal, named X-20 Dyna-Soar, as well as variety of aerospace plane concepts and studies. Neil Armstrong was selected to pilot both the X-15 and the X-20. Though the X-20 was not built, another spaceplane similar to the X-20 was built several years later and delivered to NASA in January 1966 called the HL-10 ("HL" indicated "horizontal landing").

In the mid-1960s, the US Air Force conducted classified studies on next-generation space transportation systems and concluded that semi-reusable designs were the cheapest choice. It proposed a development program with an immediate start on a "Class I" vehicle with expendable boosters, followed by slower development of a "Class II" semi-reusable design and possible "Class III" fully reusable design later. In 1967, George Mueller held a one-day symposium at NASA headquarters to study the options. Eighty people attended and presented a wide variety of designs, including earlier US Air Force designs such as the X-20 Dyna-Soar.

In 1968, NASA officially began work on what was then known as the Integrated Launch and Re-entry Vehicle (ILRV). At the same time, NASA held a separate Space Shuttle Main Engine (SSME) competition. NASA offices in Houston and Huntsville jointly issued a Request for Proposal (RFP) for ILRV studies to design a spacecraft that could deliver a payload to orbit but also re-enter the atmosphere and fly back to Earth. For example, one of the responses was for a two-stage design, featuring a large booster and a small orbiter, called the DC-3, one of several Phase A Shuttle designs. After the aforementioned "Phase A" studies, B, C, and D phases progressively evaluated in-depth designs up to 1972. In the final design, the bottom stage consisted of recoverable solid rocket boosters, and the top stage used an expendable external tank.[30]

In 1969, President Richard Nixon decided to support proceeding with Space Shuttle development. A series of development programs and analysis refined the basic design, prior to full development and testing. In August 1973, the X-24B proved that an unpowered spaceplane could re-enter Earth's atmosphere for a horizontal landing.

Across the Atlantic, European ministers met in Belgium in 1973 to authorize Western Europe's manned orbital project and its main contribution to Space Shuttle—the Spacelab program.[31] Spacelab would provide a multidisciplinary orbital space laboratory and additional space equipment for the Shuttle.[31]

STS-1 on the launch pad, December 1980

The Space Shuttle was the first operational orbital spacecraft designed for reuse. It carried different payloads to low Earth orbit, provided crew rotation and supplies for the International Space Station (ISS), and performed satellite servicing and repair. The orbiter could also recover satellites and other payloads from orbit and return them to Earth. Each Shuttle was designed for a projected lifespan of 100 launches or ten years of operational life, although this was later extended. The person in charge of designing the STS was Maxime Faget, who had also overseen the Mercury, Gemini, and Apollo spacecraft designs. The crucial factor in the size and shape of the Shuttle orbiter was the requirement that it be able to accommodate the largest planned commercial and military satellites, and have over 1,000 mile cross-range recovery range to meet the requirement for classified USAF missions for a once-around abort from a launch to a polar orbit. The militarily specified 1,085 nmi (2,009 km; 1,249 mi) cross range requirement was one of the primary reasons for the Shuttle's large wings, compared to modern commercial designs with very minimal control surfaces and glide capability. Factors involved in opting for solid rockets and an expendable fuel tank included the desire of the Pentagon to obtain a high-capacity payload vehicle for satellite deployment, and the desire of the Nixon administration to reduce the costs of space exploration by developing a spacecraft with reusable components.

Each Space Shuttle was a reusable launch system composed of three main assemblies: the reusable OV, the expendable ET, and the two reusable SRBs.[32] Only the OV entered orbit shortly after the tank and boosters are jettisoned. The vehicle was launched vertically like a conventional rocket, and the orbiter glided to a horizontal landing like an airplane, after which it was refurbished for reuse. The SRBs parachuted to splashdown in the ocean where they were towed back to shore and refurbished for later Shuttle missions.

Discovery rockets into orbit, seen here just after solid rocket booster (SRB) separation Tail-end of an orbiter showing various nozzles during an orbital maneuver with ISS

Five operational OVs were built: Columbia (OV-102), Challenger (OV-099), Discovery (OV-103), Atlantis (OV-104), and Endeavour (OV-105). A mock-up, Inspiration, currently stands at the entrance to the Astronaut Hall of Fame. An additional craft, Enterprise (OV-101), was built for atmospheric testing gliding and landing; it was originally intended to be outfitted for orbital operations after the test program, but it was found more economical to upgrade the structural test article STA-099 into orbiter Challenger (OV-099). Challenger disintegrated 73 seconds after launch in 1986, and Endeavour was built as a replacement from structural spare components. Building Endeavour cost about US$1.7 billion. Columbia broke apart over Texas during re-entry in 2003. A Space Shuttle launch cost around $450 million.[33]

Roger A. Pielke, Jr. has estimated that the Space Shuttle program cost about US$170 billion (2008 dollars) through early 2008; the average cost per flight was about US$1.5 billion.[34] Two missions were paid for by Germany, Spacelab D1 and D2 (D for Deutschland) with a payload control center in Oberpfaffenhofen.[35][36] D1 was the first time that control of a manned STS mission payload was not in U.S. hands.[17]

At times, the orbiter itself was referred to as the Space Shuttle. This was not technically correct as the Space Shuttle was the combination of the orbiter, the external tank, and the two solid rocket boosters. These components, once assembled in the Vehicle Assembly Building originally built to assemble the Apollo Saturn V rocket, were commonly referred to as the "stack".[37]

Responsibility for the Shuttle components was spread among multiple NASA field centers. The Kennedy Space Center was responsible for launch, landing and turnaround operations for equatorial orbits (the only orbit profile actually used in the program), the US Air Force at the Vandenberg Air Force Base was responsible for launch, landing and turnaround operations for polar orbits (though this was never used), the Johnson Space Center served as the central point for all Shuttle operations, the Marshall Space Flight Center was responsible for the main engines, external tank, and solid rocket boosters, the John C. Stennis Space Center handled main engine testing, and the Goddard Space Flight Center managed the global tracking network.[38]

Main article: Space Shuttle orbiter Shuttle launch profiles. From left to right: Columbia, Challenger, Discovery, Atlantis, and Endeavour.

The orbiter resembled a conventional aircraft, with double-delta wings swept 81° at the inner leading edge and 45° at the outer leading edge. Its vertical stabilizer's leading edge was swept back at a 50° angle. The four elevons, mounted at the trailing edge of the wings, and the rudder/speed brake, attached at the trailing edge of the stabilizer, with the body flap, controlled the orbiter during descent and landing.

The orbiter's 60-foot (18 m)-long payload bay, comprising most of the fuselage, could accommodate cylindrical payloads up to 15 feet (4.6 m) in diameter. Information declassified in 2011 showed that these measurements were chosen specifically to accommodate the KH-9 HEXAGON spy satellite operated by the National Reconnaissance Office.[39] Two mostly-symmetrical lengthwise payload bay doors hinged on either side of the bay comprised its entire top. Payloads were generally loaded horizontally into the bay while the orbiter was standing upright on the launch pad and unloaded vertically in the near-weightless orbital environment by the orbiter's robotic remote manipulator arm (under astronaut control), EVA astronauts, or under the payloads' own power (as for satellites attached to a rocket "upper stage" for deployment.)

Three Space Shuttle Main Engines (SSMEs) were mounted on the orbiter's aft fuselage in a triangular pattern. The engine nozzles could gimbal 10.5 degrees up and down, and 8.5 degrees from side to side during ascent to change the direction of their thrust to steer the Shuttle. The orbiter structure was made primarily from aluminum alloy, although the engine structure was made primarily from titanium alloy.

The operational orbiters built were OV-102 Columbia, OV-099 Challenger, OV-103 Discovery, OV-104 Atlantis, and OV-105 Endeavour.[40]

Main article: Space Shuttle external tank An external tank floats away from the orbiter. Interior of an External Tank

The main function of the Space Shuttle external tank was to supply the liquid oxygen and hydrogen fuel to the main engines. It was also the backbone of the launch vehicle, providing attachment points for the two solid rocket boosters and the orbiter. The external tank was the only part of the Shuttle system that was not reused. Although the external tanks were always discarded, it would have been possible to take them into orbit and re-use them (such as a wet workshop for incorporation into a space station).[28][42]

Main article: Space Shuttle Solid Rocket Booster

Two solid rocket boosters (SRBs) each provided 12,500 kN (2,800,000 lbf) of thrust at liftoff,[43] which was 83% of the total thrust at liftoff. The SRBs were jettisoned two minutes after launch at a height of about 46 km (150,000 ft), and then deployed parachutes and landed in the ocean to be recovered.[44] The SRB cases were made of steel about ½ inch (13 mm) thick.[45] The solid rocket boosters were re-used many times; the casing used in Ares I engine testing in 2009 consisted of motor cases that had been flown, collectively, on 48 Shuttle missions, including STS-1.[46]

Astronauts who have flown on multiple spacecraft report that Shuttle delivers a rougher ride than Apollo or Soyuz.[47][48] The additional vibration is caused by the solid rocket boosters, as solid fuel does not burn as evenly as liquid fuel. The vibration dampens down after the solid rocket boosters have been jettisoned.[49][50]

The orbiter could be used in conjunction with a variety of add-ons depending on the mission. This included orbital laboratories (Spacelab, Spacehab), boosters for launching payloads farther into space (Inertial Upper Stage, Payload Assist Module), and other functions, such as provided by Extended Duration Orbiter, Multi-Purpose Logistics Modules, or Canadarm (RMS). An upper stage called Transfer Orbit Stage (Orbital Science Corp. TOS-21) was also used once with the orbiter.[51] Other types of systems and racks were part of the modular Spacelab system —pallets, igloo, IPS, etc., which also supported special missions such as SRTM.[52]

Main article: Spacelab European astronauts prepare for their Spacelab mission, 1984 Interior of Spacelab LM2

A major component of the Space Shuttle Program was Spacelab, primarily contributed by a consortium of European countries, and operated in conjunction with the United States and international partners.[52] Supported by a modular system of pressurized modules, pallets, and systems, Spacelab missions executed on multidisciplinary science, orbital logistics, and international cooperation.[52] Over 29 missions flew on subjects ranging from astronomy, microgravity, radar, and life sciences, to name a few.[52] Spacelab hardware also supported missions such as Hubble (HST) servicing and space station resupply.[52] STS-2 and STS-3 provided testing, and the first full mission was Spacelab-1 (STS-9) launched on November 28, 1983.[52]

Spacelab formally began in 1973, after a meeting in Brussels, Belgium, by European heads of state.[31] Within the decade, Spacelab went into orbit and provided Europe and the United States with an orbital workshop and hardware system.[31] International cooperation, science, and exploration were realized on Spacelab.[52]

The Shuttle was one of the earliest craft to use a computerized fly-by-wire digital flight control system. This means no mechanical or hydraulic linkages connected the pilot's control stick to the control surfaces or reaction control system thrusters. The control algorithm, which used a classical Proportional Integral Derivative (PID) approach, was developed and maintained by Honeywell.[citation needed] The Shuttle's fly-by-wire digital flight control system was composed of 4 control systems each addressing a different mission phase: Ascent, Descent, On-Orbit and Aborts.[citation needed] Honeywell is also credited with the design and implementation of the Shuttle's Nose Wheel Steering Control Algorithm that allowed the Orbiter to safely land at Kennedy Space Center's Shuttle Runway.[citation needed]

A concern with using digital fly-by-wire systems on the Shuttle was reliability. Considerable research went into the Shuttle computer system. The Shuttle used five identical redundant IBM 32-bit general purpose computers (GPCs), model AP-101, constituting a type of embedded system. Four computers ran specialized software called the Primary Avionics Software System (PASS). A fifth backup computer ran separate software called the Backup Flight System (BFS). Collectively they were called the Data Processing System (DPS).[53][54]

Simulation of SSLV at Mach 2.46 and 66,000 ft (20,000 m). The surface of the vehicle is colored by the pressure coefficient, and the gray contours represent the density of the surrounding air, as calculated using the OVERFLOW software package.

The design goal of the Shuttle's DPS was fail-operational/fail-safe reliability. After a single failure, the Shuttle could still continue the mission. After two failures, it could still land safely.

The four general-purpose computers operated essentially in lockstep, checking each other. If one computer provided a different result than the other three (i.e. the one computer failed), the three functioning computers "voted" it out of the system. This isolated it from vehicle control. If a second computer of the three remaining failed, the two functioning computers voted it out. A very unlikely failure mode would have been where two of the computers produced result A, and two produced result B (a two-two split). In this unlikely case, one group of two was to be picked at random.

The Backup Flight System (BFS) was separately developed software running on the fifth computer, used only if the entire four-computer primary system failed. The BFS was created because although the four primary computers were hardware redundant, they all ran the same software, so a generic software problem could crash all of them. Embedded system avionic software was developed under totally different conditions from public commercial software: the number of code lines was tiny compared to a public commercial software product, changes were only made infrequently and with extensive testing, and many programming and test personnel worked on the small amount of computer code. However, in theory it could have still failed, and the BFS existed for that contingency. While the BFS could run in parallel with PASS, the BFS never engaged to take over control from PASS during any Shuttle mission.

The software for the Shuttle computers was written in a high-level language called HAL/S, somewhat similar to PL/I. It is specifically designed for a real time embedded system environment.

The IBM AP-101 computers originally had about 424 kilobytes of magnetic core memory each. The CPU could process about 400,000 instructions per second. They had no hard disk drive, and loaded software from magnetic tape cartridges.

In 1990, the original computers were replaced with an upgraded model AP-101S, which had about 2.5 times the memory capacity (about 1 megabyte) and three times the processor speed (about 1.2 million instructions per second). The memory was changed from magnetic core to semiconductor with battery backup.

Early Shuttle missions, starting in November 1983, took along the Grid Compass, arguably one of the first laptop computers. The GRiD was given the name SPOC, for Shuttle Portable Onboard Computer. Use on the Shuttle required both hardware and software modifications which were incorporated into later versions of the commercial product. It was used to monitor and display the Shuttle's ground position, path of the next two orbits, show where the Shuttle had line of sight communications with ground stations, and determine points for location-specific observations of the Earth. The Compass sold poorly, as it cost at least US$8000, but it offered unmatched performance for its weight and size.[55] NASA was one of its main customers.[56]

During its service life, the Shuttle's Control System never experienced a failure. Many of the lessons learned have been used to design today's high speed control algorithms.[57]

Payload specialist Millie Hughes-Fulford, who flew aboard Columbia in 1991, displays the modernist Blackburn & Danne NASA logotype, known as "the worm".

The prototype orbiter Enterprise originally had a flag of the United States on the upper surface of the left wing and the letters "USA" in black on the right wing. The name "Enterprise" was painted in black on the payload bay doors just above the hinge and behind the crew module; on the aft end of the payload bay doors was the NASA "worm" logotype in gray. Underneath the rear of the payload bay doors on the side of the fuselage just above the wing is the text "United States" in black with a flag of the United States ahead of it.

The first operational orbiter, Columbia, originally had the same markings as Enterprise, although the letters "USA" on the right wing were slightly larger and spaced farther apart. Columbia also had black markings which Enterprise lacked on its forward RCS module, around the cockpit windows, and on its vertical stabilizer, and had distinctive black "chines" on the forward part of its upper wing surfaces, which none of the other orbiters had.

Challenger established a modified marking scheme for the shuttle fleet that was matched by Discovery, Atlantis and Endeavour. The letters "USA" in black above an American flag were displayed on the left wing, with the NASA "worm" logotype in gray centered above the name of the orbiter in black on the right wing. The name of the orbiter was inscribed not on the payload bay doors, but on the forward fuselage just below and behind the cockpit windows. This would make the name visible when the shuttle was photographed in orbit with the doors open.

In 1983, Enterprise had its wing markings changed to match Challenger, and the NASA "worm" logotype on the aft end of the payload bay doors was changed from gray to black. Some black markings were added to the nose, cockpit windows and vertical tail to more closely resemble the flight vehicles, but the name "Enterprise" remained on the payload bay doors as there was never any need to open them. Columbia had its name moved to the forward fuselage to match the other flight vehicles after STS-61-C, during the 1986–88 hiatus when the shuttle fleet was grounded following the loss of Challenger, but retained its original wing markings until its last overhaul (after STS-93), and its unique black wing "chines" for the remainder of its operational life.

Beginning in 1998, the flight vehicles' markings were modified to incorporate the NASA "meatball" insignia. The "worm" logotype, which the agency had phased out, was removed from the payload bay doors and the "meatball" insignia was added aft of the "United States" text on the lower aft fuselage. The "meatball" insignia was also displayed on the left wing, with the American flag above the orbiter's name, left-justified rather than centered, on the right wing. The three surviving flight vehicles, Discovery, Atlantis and Endeavour, still bear these markings as museum displays. Enterprise became the property of the Smithsonian Institution in 1985 and was no longer under NASA's control when these changes were made, hence the prototype orbiter still has its 1983 markings and still has its name on the payload bay doors.

Atlantis was the first Shuttle to fly with a glass cockpit, on STS-101. (composite image)

The Space Shuttle was initially developed in the 1970s,[58] but received many upgrades and modifications afterward to improve performance, reliability and safety. Internally, the Shuttle remained largely similar to the original design, with the exception of the improved avionics computers. In addition to the computer upgrades, the original analog primary flight instruments were replaced with modern full-color, flat-panel display screens, called a glass cockpit, which is similar to those of contemporary airliners. To facilitate construction of ISS, the internal airlocks of each orbiter except Columbia[59] were replaced with external docking systems to allow for a greater amount of cargo to be stored on the Shuttle's mid-deck during station resupply missions.

The Space Shuttle Main Engines (SSMEs) had several improvements to enhance reliability and power. This explains phrases such as "Main engines throttling up to 104 percent." This did not mean the engines were being run over a safe limit. The 100 percent figure was the original specified power level. During the lengthy development program, Rocketdyne determined the engine was capable of safe reliable operation at 104 percent of the originally specified thrust. NASA could have rescaled the output number, saying in essence 104 percent is now 100 percent. To clarify this would have required revising much previous documentation and software, so the 104 percent number was retained. SSME upgrades were denoted as "block numbers", such as block I, block II, and block IIA. The upgrades improved engine reliability, maintainability and performance. The 109% thrust level was finally reached in flight hardware with the Block II engines in 2001. The normal maximum throttle was 104 percent, with 106 percent or 109 percent used for mission aborts.

For the first two missions, STS-1 and STS-2, the external tank was painted white to protect the insulation that covers much of the tank, but improvements and testing showed that it was not required. The weight saved by not painting the tank resulted in an increase in payload capability to orbit.[60] Additional weight was saved by removing some of the internal "stringers" in the hydrogen tank that proved unnecessary. The resulting "light-weight external tank" was first flown on STS-6 [61] and used on the majority of Shuttle missions. STS-91 saw the first flight of the "super light-weight external tank". This version of the tank was made of the 2195 aluminum-lithium alloy. It weighed 3.4 metric tons (7,500 lb) less than the last run of lightweight tanks, allowing the Shuttle to deliver heavy elements to ISS's high inclination orbit.[61] As the Shuttle was always operated with a crew, each of these improvements was first flown on operational mission flights.

The solid rocket boosters underwent improvements as well. Design engineers added a third O-ring seal to the joints between the segments after the 1986 Space Shuttle Challenger disaster.

The three nozzles of the Space Shuttle Main Engine with the two Orbital Maneuvering System (OMS) pods, and the vertical stabilizer above.

Several other SRB improvements were planned to improve performance and safety, but never came to be. These culminated in the considerably simpler, lower cost, probably safer and better-performing Advanced Solid Rocket Booster. These rockets entered production in the early to mid-1990s to support the Space Station, but were later canceled to save money after the expenditure of $2.2 billion.[62] The loss of the ASRB program resulted in the development of the Super LightWeight external Tank (SLWT), which provided some of the increased payload capability, while not providing any of the safety improvements. In addition, the US Air Force developed their own much lighter single-piece SRB design using a filament-wound system, but this too was canceled.

STS-70 was delayed in 1995, when woodpeckers bored holes in the foam insulation of Discovery's external tank. Since then, NASA has installed commercial plastic owl decoys and inflatable owl balloons which had to be removed prior to launch.[63] The delicate nature of the foam insulation had been the cause of damage to the Thermal Protection System, the tile heat shield and heat wrap of the orbiter. NASA remained confident that this damage, while it was the primary cause of the Space Shuttle Columbia disaster on February 1, 2003, would not jeopardize the completion of the International Space Station (ISS) in the projected time allotted.

A cargo-only, unmanned variant of the Shuttle was variously proposed and rejected since the 1980s. It was called the Shuttle-C, and would have traded re-usability for cargo capability, with large potential savings from reusing technology developed for the Space Shuttle. Another proposal was to convert the payload bay into a passenger area, with versions ranging from 30 to 74 seats, three days in orbit, and cost US$1.5 million per seat.[64]

On the first four Shuttle missions, astronauts wore modified US Air Force high-altitude full-pressure suits, which included a full-pressure helmet during ascent and descent. From the fifth flight, STS-5, until the loss of Challenger, one-piece light blue nomex flight suits and partial-pressure helmets were worn. A less-bulky, partial-pressure version of the high-altitude pressure suits with a helmet was reinstated when Shuttle flights resumed in 1988. The Launch-Entry Suit ended its service life in late 1995, and was replaced by the full-pressure Advanced Crew Escape Suit (ACES), which resembled the Gemini space suit in design, but retained the orange color of the Launch-Entry Suit.

To extend the duration that orbiters could stay docked at the ISS, the Station-to-Shuttle Power Transfer System (SSPTS) was installed. The SSPTS allowed these orbiters to use power provided by the ISS to preserve their consumables. The SSPTS was first used successfully on STS-118.

Space Shuttle orbiter illustration Space Shuttle drawing Space Shuttle wing cutaway Space Shuttle Orbiter and Soyuz-TM (drawn to scale). Atlantis and Endeavour on launch pads. This particular occasion is due to the final Hubble servicing mission, where the International Space Station is unreachable, which necessitates having a Shuttle on standby for a possible rescue mission.

Orbiter[65] (for Endeavour, OV-105)

The earliest Shuttle flights had the minimum crew of two; many later missions a crew of five. By program end, typically seven people would fly: (commander, pilot, several mission specialists, one of whom (MS-2) acted as the flight engineer starting with STS-9 in 1983). On two occasions, eight astronauts have flown (STS-61-A, STS-71). Eleven people could be accommodated in an emergency mission (see STS-3xx).

External tank (for SLWT)

Solid Rocket Boosters

System Stack

STS mission profile Shuttle launch of Atlantis at sunset in 2001. The Sun is behind the camera, and the plume's shadow intersects the Moon across the sky. See also: Space shuttle launch countdown and Space shuttle launch commit criteria

All Space Shuttle missions were launched from Kennedy Space Center (KSC). The weather criteria used for launch included, but were not limited to: precipitation, temperatures, cloud cover, lightning forecast, wind, and humidity.[70] The Shuttle was not launched under conditions where it could have been struck by lightning. Aircraft are often struck by lightning with no adverse effects because the electricity of the strike is dissipated through its conductive structure and the aircraft is not electrically grounded. Like most jet airliners, the Shuttle was mainly constructed of conductive aluminum, which would normally shield and protect the internal systems. However, upon liftoff the Shuttle sent out a long exhaust plume as it ascended, and this plume could have triggered lightning by providing a current path to ground. The NASA Anvil Rule for a Shuttle launch stated that an anvil cloud could not appear within a distance of 10 nautical miles.[71] The Shuttle Launch Weather Officer monitored conditions until the final decision to scrub a launch was announced. In addition, the weather conditions had to be acceptable at one of the Transatlantic Abort Landing sites (one of several Space Shuttle abort modes) to launch as well as the solid rocket booster recovery area.[70][72] While the Shuttle might have safely endured a lightning strike, a similar strike caused problems on Apollo 12, so for safety NASA chose not to launch the Shuttle if lightning was possible (NPR8715.5).

Historically, the Shuttle was not launched if its flight would run from December to January (a year-end rollover or YERO). Its flight software, designed in the 1970s, was not designed for this, and would require the orbiter's computers be reset through a change of year, which could cause a glitch while in orbit. In 2007, NASA engineers devised a solution so Shuttle flights could cross the year-end boundary.[73]

After the final hold in the countdown at T-minus 9 minutes, the Shuttle went through its final preparations for launch, and the countdown was automatically controlled by the Ground Launch Sequencer (GLS), software at the Launch Control Center, which stopped the count if it sensed a critical problem with any of the Shuttle's onboard systems. The GLS handed off the count to the Shuttle's on-board computers at T minus 31 seconds, in a process called auto sequence start.

At T-minus 16 seconds, the massive sound suppression system (SPS) began to drench the Mobile Launcher Platform (MLP) and SRB trenches with 300,000 US gallons (1,100 m3) of water to protect the Orbiter from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during lift off.[74][75]

At T-minus 10 seconds, hydrogen igniters were activated under each engine bell to quell the stagnant gas inside the cones before ignition. Failure to burn these gases could trip the onboard sensors and create the possibility of an overpressure and explosion of the vehicle during the firing phase. The main engine turbopumps also began charging the combustion chambers with liquid hydrogen and liquid oxygen at this time. The computers reciprocated this action by allowing the redundant computer systems to begin the firing phase.

Space Shuttle Main Engine ignition

The three main engines (SSMEs) started at T-6.6 seconds. The main engines ignited sequentially via the Shuttle's general purpose computers (GPCs) at 120 millisecond intervals. All three SSMEs were required to reach 90% rated thrust within three seconds, otherwise the onboard computers would initiate an RSLS abort. If all three engines indicated nominal performance by T-3 seconds, they were commanded to gimbal to liftoff configuration and the command would be issued to arm the SRBs for ignition at T-0.[76] Between T-6.6 seconds and T-3 seconds, while the SSMEs were firing but the SRBs were still bolted to the pad, the offset thrust caused the entire launch stack (boosters, tank and orbiter) to pitch down 650 mm (25.5 in) measured at the tip of the external tank. The three second delay after confirmation of SSME operation was to allow the stack to return to nearly vertical. At T-0 seconds, the 8 frangible nuts holding the SRBs to the pad were detonated, the SSMEs were commanded to 100% throttle, and the SRBs were ignited. By T+0.23 seconds, the SRBs built up enough thrust for liftoff to commence, and reached maximum chamber pressure by T+0.6 seconds.[77] The Johnson Space Center's Mission Control Center assumed control of the flight once the SRBs had cleared the launch tower.

Shortly after liftoff, the Shuttle's main engines were throttled up to 104.5% and the vehicle began a combined roll, pitch and yaw maneuver that placed it onto the correct heading (azimuth) for the planned orbital inclination and in a heads down attitude with wings level. The Shuttle flew upside down during the ascent phase. This orientation allowed a trim angle of attack that was favorable for aerodynamic loads during the region of high dynamic pressure, resulting in a net positive load factor, as well as providing the flight crew with a view of the horizon as a visual reference. The vehicle climbed in a progressively flattening arc, accelerating as the mass of the SRBs and main tank decreased. To achieve low orbit requires much more horizontal than vertical acceleration. This was not visually obvious, since the vehicle rose vertically and was out of sight for most of the horizontal acceleration. The near circular orbital velocity at the 380 kilometers (236 mi) altitude of the International Space Station is 27,650 km/h (17,180 mph), roughly equivalent to Mach 23 at sea level. As the International Space Station orbits at an inclination of 51.6 degrees, missions going there must set orbital inclination to the same value in order to rendezvous with the station.

Around 30 seconds into ascent, the SSMEs were throttled down—usually to 72%, though this varied—to reduce the maximum aerodynamic forces acting on the Shuttle at a point called Max Q. Additionally, the propellant grain design of the SRBs caused their thrust to drop by about 30% by 50 seconds into ascent. Once the Orbiter's guidance verified that Max Q would be within Shuttle structural limits, the main engines were throttled back up to 104.5%; this throttling down and back up was called the "thrust bucket". To maximize performance, the throttle level and timing of the thrust bucket was shaped to bring the Shuttle as close to aerodynamic limits as possible.[78]

Solid Rocket Booster (SRB) separation during STS-1. The white external tank pictured was used on STS-1 and STS-2.

At around T+126 seconds, pyrotechnic fasteners released the SRBs and small separation rockets pushed them laterally away from the vehicle. The SRBs parachuted back to the ocean to be reused. The Shuttle then began accelerating to orbit on the main engines. Acceleration at this point would typically fall to .9 g, and the vehicle would take on a somewhat nose-up angle to the horizon – it used the main engines to gain and then maintain altitude while it accelerated horizontally towards orbit. At about five and three-quarter minutes into ascent, the orbiter's direct communication links with the ground began to fade, at which point it rolled heads up to reroute its communication links to the Tracking and Data Relay Satellite system.

At about seven and a half minutes into ascent, the mass of the vehicle was low enough that the engines had to be throttled back to limit vehicle acceleration to 3 g (29.4 m/s² or 96.5 ft/s², equivalent to accelerating from zero to 105.9 km/h (65.8 mph) in a second). The Shuttle would maintain this acceleration for the next minute, and main engine cut-off (MECO) occurred at about eight and a half minutes after launch.[79] The main engines were shut down before complete depletion of propellant, as running dry would have destroyed the engines. The oxygen supply was terminated before the hydrogen supply, as the SSMEs reacted unfavorably to other shutdown modes. (Liquid oxygen has a tendency to react violently, and supports combustion when it encounters hot engine metal.) A few seconds after MECO, the external tank was released by firing pyrotechnic fasteners.

At this point the Shuttle and external tank were on a slightly suborbital trajectory, coasting up towards apogee. Once at apogee, about half an hour after MECO, the Shuttle's Orbital Maneuvering System (OMS) engines were fired to raise its perigee and achieve orbit, while the external tank fell back into the atmosphere and burned up over the Indian Ocean or the Pacific Ocean depending on launch profile.[65] The sealing action of the tank plumbing and lack of pressure relief systems on the external tank helped it break up in the lower atmosphere. After the foam burned away during re-entry, the heat caused a pressure buildup in the remaining liquid oxygen and hydrogen until the tank exploded. This ensured that any pieces that fell back to Earth were small.

Ascent tracking Contraves-Goerz Kineto Tracking Mount used to image the space Shuttle during launch ascent Multicolored afterglow of the STS-131 launch

The Shuttle was monitored throughout its ascent for short range tracking (10 seconds before liftoff through 57 seconds after), medium range (7 seconds before liftoff through 110 seconds after) and long range (7 seconds before liftoff through 165 seconds after). Short range cameras included 22 16mm cameras on the Mobile Launch Platform and 8 16mm on the Fixed Service Structure, 4 high speed fixed cameras located on the perimeter of the launch complex plus an additional 42 fixed cameras with 16mm motion picture film. Medium range cameras included remotely operated tracking cameras at the launch complex plus 6 sites along the immediate coast north and south of the launch pad, each with 800mm lens and high speed cameras running 100 frames per second. These cameras ran for only 4–10 seconds due to limitations in the amount of film available. Long range cameras included those mounted on the external tank, SRBs and orbiter itself which streamed live video back to the ground providing valuable information about any debris falling during ascent. Long range tracking cameras with 400-inch film and 200-inch video lenses were operated by a photographer at Playalinda Beach as well as 9 other sites from 38 miles north at the Ponce Inlet to 23 miles south to Patrick Air Force Base (PAFB) and additional mobile optical tracking camera was stationed on Merritt Island during launches. A total of 10 HD cameras were used both for ascent information for engineers and broadcast feeds to networks such as NASA TV and HDNet. The number of cameras significantly increased and numerous existing cameras were upgraded at the recommendation of the Columbia Accident Investigation Board to provide better information about the debris during launch. Debris was also tracked using a pair of Weibel Continuous Pulse Doppler X-band radars, one on board the SRB recovery ship MV Liberty Star positioned north east of the launch pad and on a ship positioned south of the launch pad. Additionally, during the first 2 flights following the loss of Columbia and her crew, a pair of NASA WB-57 reconnaissance aircraft equipped with HD Video and Infrared flew at 60,000 feet (18,000 m) to provide additional views of the launch ascent.[80] Kennedy Space Center also invested nearly $3 million in improvements to the digital video analysis systems in support of debris tracking.[81]

Once in orbit, the Shuttle usually flew at an altitude of 320 km (170 nmi) and occasionally as high as 650 km (350 nmi).[82] In the 1980s and 1990s, many flights involved space science missions on the NASA/ESA Spacelab, or launching various types of satellites and science probes. By the 1990s and 2000s the focus shifted more to servicing the space station, with fewer satellite launches. Most missions involved staying in orbit several days to two weeks, although longer missions were possible with the Extended Duration Orbiter add-on or when attached to a space station.

Almost the entire Space Shuttle re-entry procedure, except for lowering the landing gear and deploying the air data probes, was normally performed under computer control. However, the re-entry could be flown entirely manually if an emergency arose. The approach and landing phase could be controlled by the autopilot, but was usually hand flown.

Glowing plasma trail from Space Shuttle Atlantis re-entry as seen from the Space Station

The vehicle began re-entry by firing the Orbital maneuvering system engines, while flying upside down, backside first, in the opposite direction to orbital motion for approximately three minutes, which reduced the Shuttle's velocity by about 200 mph (322 km/h). The resultant slowing of the Shuttle lowered its orbital perigee down into the upper atmosphere. The Shuttle then flipped over, by pushing its nose down (which was actually "up" relative to the Earth, because it was flying upside down). This OMS firing was done roughly halfway around the globe from the landing site.

The vehicle started encountering more significant air density in the lower thermosphere at about 400,000 ft (120 km), at around Mach 25, 8,200 m/s (30,000 km/h; 18,000 mph). The vehicle was controlled by a combination of RCS thrusters and control surfaces, to fly at a 40-degree nose-up attitude, producing high drag, not only to slow it down to landing speed, but also to reduce reentry heating. As the vehicle encountered progressively denser air, it began a gradual transition from spacecraft to aircraft. In a straight line, its 40-degree nose-up attitude would cause the descent angle to flatten-out, or even rise. The vehicle therefore performed a series of four steep S-shaped banking turns, each lasting several minutes, at up to 70 degrees of bank, while still maintaining the 40-degree angle of attack. In this way it dissipated speed sideways rather than upwards. This occurred during the 'hottest' phase of re-entry, when the heat-shield glowed red and the G-forces were at their highest. By the end of the last turn, the transition to aircraft was almost complete. The vehicle leveled its wings, lowered its nose into a shallow dive and began its approach to the landing site.

The orbiter's maximum glide ratio/lift-to-drag ratio varies considerably with speed, ranging from 1:1 at hypersonic speeds, 2:1 at supersonic speeds and reaching 4.5:1 at subsonic speeds during approach and landing.[83]

In the lower atmosphere, the orbiter flies much like a conventional glider, except for a much higher descent rate, over 50 m/s (180 km/h; 110 mph) or 9,800 fpm. At approximately Mach 3, two air data probes, located on the left and right sides of the orbiter's forward lower fuselage, are deployed to sense air pressure related to the vehicle's movement in the atmosphere.

Final approach and landing phase Play media STS-127, Space Shuttle Endeavour landing video, 2009

When the approach and landing phase began, the orbiter was at a 3,000 m (9,800 ft) altitude, 12 km (7.5 mi) from the runway. The pilots applied aerodynamic braking to help slow down the vehicle. The orbiter's speed was reduced from 682 to 346 km/h (424 to 215 mph), approximately, at touch-down (compared to 260 km/h or 160 mph for a jet airliner). The landing gear was deployed while the Orbiter was flying at 430 km/h (270 mph). To assist the speed brakes, a 12 m (39 ft) drag chute was deployed either after main gear or nose gear touchdown (depending on selected chute deploy mode) at about 343 km/h (213 mph). The chute was jettisoned once the orbiter slowed to 110 km/h (68.4 mph).

Media related to Landings of space Shuttles at Wikimedia Commons

Main article: Orbiter Processing Facility Discovery after landing on Earth for crew disembarkment

After landing, the vehicle stayed on the runway for several hours for the orbiter to cool. Teams at the front and rear of the orbiter tested for presence of hydrogen, hydrazine, monomethylhydrazine, nitrogen tetroxide and ammonia (fuels and by-products of the reaction control system and the orbiter's three APUs). If hydrogen was detected, an emergency would be declared, the orbiter powered down and teams would evacuate the area. A convoy of 25 specially designed vehicles and 150 trained engineers and technicians approached the orbiter. Purge and vent lines were attached to remove toxic gases from fuel lines and the cargo bay about 45–60 minutes after landing. A flight surgeon boarded the orbiter for initial medical checks of the crew before disembarking. Once the crew left the orbiter, responsibility for the vehicle was handed from the Johnson Space Center back to the Kennedy Space Center.[84]

If the mission ended at Edwards Air Force Base in California, White Sands Space Harbor in New Mexico, or any of the runways the orbiter might use in an emergency, the orbiter was loaded atop the Shuttle Carrier Aircraft, a modified 747, for transport back to the Kennedy Space Center, landing at the Shuttle Landing Facility. Once at the Shuttle Landing Facility, the orbiter was then towed 2 miles (3.2 km) along a tow-way and access roads normally used by tour buses and KSC employees to the Orbiter Processing Facility where it began a months-long preparation process for the next mission.[84]

See also: List of space shuttle landing runways Atlantis deploys the landing gear before landing.

NASA preferred Space Shuttle landings to be at Kennedy Space Center.[85] If weather conditions made landing there unfavorable, the Shuttle could delay its landing until conditions are favorable, touch down at Edwards Air Force Base, California, or use one of the multiple alternate landing sites around the world. A landing at any site other than Kennedy Space Center meant that after touchdown the Shuttle must be mated to the Shuttle Carrier Aircraft and returned to Cape Canaveral. Space Shuttle Columbia (STS-3) once landed at the White Sands Space Harbor, New Mexico; this was viewed as a last resort as NASA scientists believed that the sand could potentially damage the Shuttle's exterior.

There were many alternative landing sites that were never used.[86][87]

Discovery at ISS in 2011 (STS-133)

An example of technical risk analysis for a STS mission is SPRA iteration 3.1 top risk contributors for STS-133:[88][89]

  1. Micro-Meteoroid Orbital Debris (MMOD) strikes
  2. Space Shuttle Main Engine (SSME)-induced or SSME catastrophic failure
  3. Ascent debris strikes to TPS leading to LOCV on orbit or entry
  4. Crew error during entry
  5. RSRM-induced RSRM catastrophic failure (RSRM are the rocket motors of the SRBs)
  6. COPV failure (COPV are tanks inside the orbiter that hold gas at high pressure)

An internal NASA risk assessment study (conducted by the Shuttle Program Safety and Mission Assurance Office at Johnson Space Center) released in late 2010 or early 2011 concluded that the agency had seriously underestimated the level of risk involved in operating the Shuttle. The report assessed that there was a 1 in 9 chance of a catastrophic disaster during the first nine flights of the Shuttle but that safety improvements had later improved the risk ratio to 1 in 90.[90]

Main article: List of Space Shuttle missions

Below is a list of major events in the Space Shuttle orbiter fleet.

OV-101 Enterprise takes flight for the first time over Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). Atlantis lifts off from Launch Pad 39A at NASA's Kennedy Space Center in Florida on the STS-132 mission to the International Space Station at 2:20 pm EDT on May 14, 2010. This was one of the last scheduled flights for Atlantis before it was retired.

Sources: NASA launch manifest,[94] NASA Space Shuttle archive[95]

Main articles: Space Shuttle Challenger disaster and Space Shuttle Columbia disaster

On January 28, 1986, Challenger disintegrated 73 seconds after launch due to the failure of the right SRB, killing all seven astronauts on board. The disaster was caused by low-temperature impairment of an O-ring, a mission critical seal used between segments of the SRB casing. Failure of the O-ring allowed hot combustion gases to escape from between the booster sections and burn through the adjacent external tank, causing it to explode.[96] Repeated warnings from design engineers voicing concerns about the lack of evidence of the O-rings' safety when the temperature was below 53 °F (12 °C) had been ignored by NASA managers.[97]

On February 1, 2003, Columbia disintegrated during re-entry, killing its crew of seven, because of damage to the carbon-carbon leading edge of the wing caused during launch. Ground control engineers had made three separate requests for high-resolution images taken by the Department of Defense that would have provided an understanding of the extent of the damage, while NASA's chief thermal protection system (TPS) engineer requested that astronauts on board Columbia be allowed to leave the vehicle to inspect the damage. NASA managers intervened to stop the Department of Defense's assistance and refused the request for the spacewalk,[98] and thus the feasibility of scenarios for astronaut repair or rescue by Atlantis were not considered by NASA management at the time.[99]

Main article: Space Shuttle retirement Atlantis orbiter's final welcome home, 2011

NASA retired the Space Shuttle in 2011, after 30 years of service. The Shuttle was originally conceived of and presented to the public as a "Space Truck", which would, among other things, be used to build a United States space station in low earth orbit in the early 1990s. When the US space station evolved into the International Space Station project, which suffered from long delays and design changes before it could be completed, the retirement of the Space Shuttle was delayed several times until 2011, serving at least 15 years longer than originally planned. Discovery was the first of NASA's three remaining operational Space Shuttles to be retired.[100]

The final Space Shuttle mission was originally scheduled for late 2010, but the program was later extended to July 2011 when Michael Suffredini of the ISS program said that one additional trip was needed in 2011 to deliver parts to the International Space Station.[101] The Shuttle's final mission consisted of just four astronauts—Christopher Ferguson (Commander), Douglas Hurley (Pilot), Sandra Magnus (Mission Specialist 1), and Rex Walheim (Mission Specialist 2);[102] they conducted the 135th and last space Shuttle mission on board Atlantis, which launched on July 8, 2011, and landed safely at the Kennedy Space Center on July 21, 2011, at 5:57 AM EDT (09:57 UTC).[103] The U.S. has since relied on the Russian Soyuz spacecraft to transport astronauts and supplies to the International Space Station.

Space Shuttle Program commemorative patch

NASA announced it would transfer orbiters to education institutions or museums at the conclusion of the Space Shuttle program. Each museum or institution is responsible for covering the US$28.8 million cost of preparing and transporting each vehicle for display. Twenty museums from across the country submitted proposals for receiving one of the retired orbiters.[104] NASA also made Space Shuttle thermal protection system tiles available to schools and universities for less than US$25 each.[105] About 7,000 tiles were available on a first-come, first-served basis, limited to one per institution.[105]

On April 12, 2011, NASA announced selection of locations for the remaining Shuttle orbiters:[106][107]

Endeavour at Los Angeles International Airport

In August 2011, the NASA Office of Inspector General (OIG) published a "Review of NASA's Selection of Display Locations for the Space Shuttle Orbiters"; the review had four main findings:[108]

The NASA OIG had three recommendations, saying NASA should:[108]

In September 2011, the CEO and two board members of Seattle's Museum of Flight met with NASA Administrator Charles Bolden, pointing out "significant errors in deciding where to put its four retiring Space Shuttles"; the errors alleged include inaccurate information on Museum of Flight's attendance and international visitor statistics, as well as the readiness of the Intrepid Sea-Air-Space Museum's exhibit site.[109]

Flight and mid-deck training hardware will be taken from the Johnson Space Center and will go to the National Air and Space Museum and the National Museum of the U.S. Air Force. The full fuselage mockup, which includes the payload bay and aft section but no wings, is to go to the Museum of Flight in Seattle. Mission Simulation and Training Facility's fixed simulator will go to the Adler Planetarium in Chicago, and the motion simulator will go to the Texas A&M Aerospace Engineering Department in College Station, Texas. Other simulators used in Shuttle astronaut training will go to the Wings of Dreams Aviation Museum in Starke, Florida and the Virginia Air and Space Center in Hampton, Virginia.[104]

Main article: Space Shuttle retirement STS conducted numerous experiments in space, such as this ionization experiment Sprint cameras, tested by the Shuttle, may be used on ISS and other missions

Until another US manned spacecraft is ready, crews will travel to and from the International Space Station (ISS) exclusively aboard the Russian Soyuz spacecraft.

A planned successor to STS was the "Shuttle II", during the 1980s and 1990s, and later the Constellation program during the 2004–2010 period. CSTS was a proposal to continue to operate STS commercially, after NASA.[112] In September 2011, NASA announced the selection of the design for the new Space Launch System that is planned to launch the Orion spacecraft and other hardware to missions beyond low earth-orbit.[113][114][115]

The Commercial Orbital Transportation Services program began in 2006 with the purpose of creating commercially operated unmanned cargo vehicles to service the ISS.[116] The Commercial Crew Development (CCDev) program was started in 2010 to create commercially operated manned spacecraft capable of delivering at least four crew members to the ISS, to stay docked for 180 days, and then return them back to Earth.[117] These spacecraft were to become operational in the 2010s.[118]

Space Shuttles have been features of fiction and nonfiction, from children's movies to documentaries. Early examples include the 1979 James Bond film, Moonraker, the 1982 Activision videogame Space Shuttle: A Journey into Space (1982) and G. Harry Stine's 1981 novel Shuttle Down. In the 1986 film SpaceCamp, Atlantis accidentally launches into space with a group of U.S. Space Camp participants as its crew. A space shuttle named Intrepid is featured in the 1989 film Moontrap.

The 1998 film Armageddon portrays a combined crew of offshore oil rig workers and US military staff who pilot two modified Shuttles to avert the destruction of Earth by an asteroid. Retired American test pilots visit a Russian satellite in the 2000 Clint Eastwood adventure film Space Cowboys. In the 2003 film The Core, the Endeavour's landing is disrupted by the Earth's magnetic core, and its crew is selected to pilot a vehicle designed to restart the core. The 2004 Bollywood movie Swades, where a Space Shuttle is used to launch a special rainfall monitoring satellite, was filmed at Kennedy Space Center in the year after the Columbia disaster that had taken the life of Indian-American astronaut KC Chawla.

On television, the 1996 drama The Cape portrays the lives of a group of NASA astronauts as they prepare for and fly Shuttle missions. Odyssey 5 was a short-lived sci-fi series that features the crew of a Space Shuttle as the last survivors of a disaster that destroys Earth. The 1997–2007 sci-fi series Stargate SG-1 has a shuttle rescue written into an episode.

The 2013 film Gravity features the fictional Space Shuttle Explorer during STS-157, whose crew are killed or left stranded after it is destroyed by a shower of high speed orbital debris. The 2017 Lego film The Lego Batman Movie features a hybrid between the Batmobile and a Space Shuttle, named "the Bat Space Shuttle" by Dick Grayson. It's clearly based on the Lego City set 3367 ("Space Shuttle"), but is black and weapon-equipped.

A United States Space Shuttle stamp

The Space Shuttle has also been the subject of toys and models; for example, a large Lego Space Shuttle model was constructed by visitors at Kennedy Space Center,[119] and smaller models have been sold commercially as a standard "LegoLand" set. A 1980 pinball machine Space Shuttle was produced by Zaccaria and a 1984 pinball machine Space Shuttle: Pinball Adventure was produced by Williams and features a plastic Space Shuttle model among other artwork of astronauts on the play field. The Space Shuttle also appears in a number of flight simulator and space flight simulator games such as Microsoft Space Simulator, Orbiter, FlightGear, X-Plane and Space Shuttle Mission 2007. Several Transformers toys were modeled after the Space Shuttle.

Main article: U.S. space exploration history on U.S. stamps § Space Shuttle Issues

The U.S. Postal Service has released several postage issues that depict the Space Shuttle. The first such stamps were issued in 1981, and are on display at the National Postal Museum.[120]

Space Shuttle program insignia Airport Car Service Cost

https://www.gloviz.co.za/brakpan/

Gloviz Have Van Service List